مجلة أجسر – مجلة عربية محكمة في مجال العلوم – زورو موقعنا

الوقت

03:26 مساءً

تاريخ النشر

03, سبتمبر 2020

الكاتب

وحدة الدراسات والبحوث

منظمة المجتمع العلمي العربي

قائمة الأوراق البحثية العربية المنشورة منذ عام 2015 مرتبة حسب عدد الاقتباسات حول ما يلي: من الكرز والشوفان الأحمر (Rhopalosiphum padi)، من أوراق الذرة (Rhopalosiphum maidis)، من القمح الإنجليزي (Sitobion avenae)، من الحبوب الوردي (Metopolophium dirhodum)، من القمح الروسي (Diuraphis noxia)، من الحبوب (Schizaphis graminum)، دودة الجيش الشرقي (Mythimna separata)، حلم التفاف أوراق الحنطة (Aceria tosichella)، حفار أوراق الحبوب (syringopais temperatella)، مرض لفحة الأوراق البكتيرية (Pseudomonas syringae)، مرض تخطط الأوراق البكتيري أو العصافة السوداء (Xanthomonas translucens pv. undulosa) مرض لفحة الألترناريا على الأوراق (Alternaria triticina)، مرض صدأ أوراق القمح (Puccinia triticina)، مرض الصدأ الأصفر أو المخطط (Puccinia striiformis)، مرض البياض الدقيقي في القمح (Erysiphe graminis f.sp. tritici)، مرض  تبقع أوراق القمح السبتوري (Septoria nodorum & S.tritici)، مرض البقعه القصديرية (Pyrenophora tritici-repentis)، مرض لفحة القمح الفطرية (Magnaporthe oryzae)، فيروس موزاييك القمح (Triticum mosaic virus)، فيروس مرض السهول العالية في القمح (High Plains Wheat Mosaic)، فيروس الموزاييك المخطط للقمح (Wheat streak mosaic).

 

  • المصدرScopus
  • نوع الأوراق: Article & Review

 

 

 

  1. Effector discovery in the fungal wheat pathogen Zymoseptoria tritici
    Mirzadi Gohari, A., Ware, S.B., Wittenberg, A.H.J., Mehrabi, R., Ben M’Barek, S., Verstappen, E.C.P., van der Lee, T.A.J., Robert, O., Schouten, H.J., de Wit, P.P.J.G.M., Kema, G.H.J.
    (2015) Molecular Plant Pathology, 16 (9), pp. 931-945.
  2. Genome-wide DArT and SNP scan for QTL associated with resistance to stripe rust (Puccinia striiformis f. sp. tritici) in elite ICARDA wheat (Triticum aestivum L.) germplasm
    Jighly, A., Oyiga, B.C., Makdis, F., Nazari, K., Youssef, O., Tadesse, W., Abdalla, O., Ogbonnaya, F.C.
    (2015) Theoretical and Applied Genetics, 128 (7), pp. 1277-1295.
  3. Deciphering genome content and evolutionary relationships of isolates from the fungus Magnaporthe oryzae attacking different host plants
    Chiapello, H., Mallet, L., Guérin, C., Aguileta, G., Amselem, J., Kroj, T., Ortega-Abboud, E., Lebrun, M.-H., Henrissat, B., Gendrault, A., Rodolphe, F., Tharreau, D., Fournier, E.
    (2015) Genome Biology and Evolution, 7 (10), pp. 2896-2912.
  4. Impact of imidacloprid and natural enemies on cereal aphids: Integration or ecosystem service disruption?
    Mohammed, A.A.A.H., Desneux, N., Fan, Y., Han, P., Ali, A., Song, D., Gao, X.-W.
    (2018) Entomologia Generalis, 37 (1), pp. 47-61.
  5. Stress and sexual reproduction affect the dynamics of the wheat pathogen effector AvrStb6 and strobilurin resistance
    Kema, G.H.J., Mirzadi Gohari, A., Aouini, L., Gibriel, H.A.Y., Ware, S.B., Van Den Bosch, F., Manning-Smith, R., Alonso-Chavez, V., Helps, J., Ben M’Barek, S., Mehrabi, R., Diaz-Trujillo, C., Zamani, E., Schouten, H.J., Van Der Lee, T.A.J., Waalwijk, C., De Waard, M.A., De Wit, P.J.G.M., Verstappen, E.C.P., Thomma, B.P.H.J., Meijer, H.J.G., Seidl, M.F.
    (2018) Nature Genetics, 50 (3), pp. 375-380.
  6. Genomic regions conferring resistance to multiple fungal pathogens in synthetic hexaploid wheat
    Jighly, A., Alagu, M., Makdis, F., Singh, M., Singh, S., Emebiri, L.C., Ogbonnaya, F.C.
    (2016) Molecular Breeding, 36 (9), art. no. 127, .
  7. Screening of wheat genotypes for leaf rust resistance along with grain yield
    Draz, I.S., Abou-Elseoud, M.S., Kamara, A.-E.M., Alaa-Eldein, O.A.-E., El-Bebany, A.F.
    (2015) Annals of Agricultural Sciences, 60 (1), pp. 29-39.
  8. Molecular markers for tracking the origin and worldwide distribution of invasive strains of Puccinia striiformis
    Walter, S., Ali, S., Kemen, E., Nazari, K., Bahri, B.A., Enjalbert, J., Hansen, J.G., Brown, J.K.M., Sicheritz-Pontén, T., Jones, J., de Vallavieille-Pope, C., Hovmøller, M.S., Justesen, A.F.
    (2016) Ecology and Evolution, 6 (9), pp. 2790-2804.
  9. Marker assisted transfer of two powdery mildew resistance genes PmTb7A.1 and PmTb7A.2 from Triticum boeoticum (Boiss.) to Triticum aestivum (L.)
    Elkot, A.F.A., Chhuneja, P., Kaur, S., Saluja, M., Keller, B., Singh, K.
    (2015) PLoS ONE, 10 (6), art. no. e0128297, .
  10. Wheat Dehydrin K-Segments Ensure Bacterial Stress Tolerance, Antiaggregation and Antimicrobial Effects
    Drira, M., Saibi, W., Amara, I., Masmoudi, K., Hanin, M., Brini, F.
    (2015) Applied Biochemistry and Biotechnology, 175 (7), pp. 3310-3321.
  11. FPLC and liquid-chromatography mass spectrometry identify candidate necrosis-inducing proteins from culture filtrates of the fungal wheat pathogen Zymoseptoria tritici
    Ben M’Barek, S., Cordewener, J.H.G., Tabib Ghaffary, S.M., van der Lee, T.A.J., Liu, Z., Mirzadi Gohari, A., Mehrabi, R., America, A.H.P., Robert, O., Friesen, T.L., Hamza, S., Stergiopoulos, I., de Wit, P.J.G.M., Kema, G.H.J.
    (2015) Fungal Genetics and Biology, 79, pp. 54-62.
  12. A threshold-based weather model for predicting stripe rust infection in winter wheat
    El Jarroudi, M.E., Kouadio, L., Bock, C.H., El Jarroudi, M.E., Junk, J., Pasquali, M., Maraite, H., Delfosse, P.
    (2017) Plant Disease, 101 (5), pp. 693-703.

  1. Field evaluation of durum wheat landraces for prevailing abiotic and biotic stresses in highland rainfed regions of Iran
    Mohammadi, R., Sadeghzadeh, B., Ahmadi, H., Bahrami, N., Amri, A.
    (2015) Crop Journal, 3 (5), pp. 423-433.
  2. Adenine and guanine application and its effect on salinity tolerant of wheat plants and pest infestations
    Hussein, M.M., Sabbour, M.M., El-Faham, S.Y.
    (2015) International Journal of ChemTech Research, 8 (12), pp. 121-129.
  3. Thermal generalist behaviour of invasive Puccinia striiformis f. sp. tritici strains under current and future climate conditions
    de Vallavieille-Pope, C., Bahri, B., Leconte, M., Zurfluh, O., Belaid, Y., Maghrebi, E., Huard, F., Huber, L., Launay, M., Bancal, M.O.
    (2018) Plant Pathology, 67 (6), pp. 1307-1320.
  4. A comparative analysis of nonhost resistance across the two Triticeae crop species wheat and barley
    Delventhal, R., Rajaraman, J., Stefanato, F.L., Rehman, S., Aghnoum, R., McGrann, G.R.D., Bolger, M., Usadel, B., Hedley, P.E., Boyd, L., Niks, R.E., Schweizer, P., Schaffrath, U.
    (2017) BMC Plant Biology, 17 (1), art. no. 232, .
  5. Identification of resistance sources to Septoria Tritici blotch in old Tunisian durum wheat germplasm applied for the analysis of the Zymoseptoria tritici-durum wheat interaction
    Ferjaoui, S., M’Barek, S.B., Bahri, B., Slimane, R.B., Hamza, S.
    (2015) Journal of Plant Pathology, 97 (3), pp. 471-481.
  6. Effects of Agronomic Management and Climate on Leaf Phenolic Profiles, Disease Severity, and Grain Yield in Organic and Conventional Wheat Production Systems
    Rempelos, L., Almuayrifi, A.M., Baranski, M., Tetard-Jones, C., Eyre, M., Shotton, P., Cakmak, I., Ozturk, L., Cooper, J., Volakakis, N., Schmidt, C., Sufar, E., Wang, J., Wilkinson, A., Rosa, E.A.S., Zhao, B., Rose, T.J., Leifert, C., Bilsborrow, P.
    (2018) Journal of Agricultural and Food Chemistry, 66 (40), pp. 10369-10379.
  7. Diversity and evolution of mariner-like elements in aphid genomes
    Bouallègue, M., Filée, J., Kharrat, I., Mezghani-Khemakhem, M., Rouault, J.-D., Makni, M., Capy, P.
    (2017) BMC Genomics, 18 (1), art. no. 494, .
  8. TaMDAR6 acts as a negative regulator of plant cell death and participates indirectly in stomatal regulation during the wheat stripe rust-fungus interaction
    Abou-Attia, M.A., Wang, X., Nashaat Al-Attala, M., Xu, Q., Zhan, G., Kang, Z.
    (2016) Physiologia Plantarum, 156 (3), pp. 262-277.
  9. Emergence of a new race of leaf rust with combined virulence to Lr14a and Lr72 genes on durum wheat
    Soleiman, N.H., Solis, I., Soliman, M.H., Sillero, J.C., Villegas, D., Alvaro, F., Royo, C., Serra, J., Ammar, K., Martinez-Moreno, F.
    (2016) Spanish Journal of Agricultural Research, 14 (3), art. no. e10SC02, 4 p.
  10. Fine mapping of powdery mildew resistance genes PmTb7A.1 and PmTb7A.2 in Triticum boeoticum (Boiss.) using the shotgun sequence assembly of chromosome 7AL
    Chhuneja, P., Yadav, B., Stirnweis, D., Hurni, S., Kaur, S., Elkot, A.F., Keller, B., Wicker, T., Sehgal, S., Gill, B.S., Singh, K.
    (2015) Theoretical and Applied Genetics, 128 (10), pp. 2099-2111.
  11. Proteome catalog of Zymoseptoria tritici captured during pathogenesis in wheat
    Ben M’Barek, S., Cordewener, J.H.G., van der Lee, T.A.J., America, A.H.P., Mirzadi Gohari, A., Mehrabi, R., Hamza, S., de Wit, P.J.G.M., Kema, G.H.J.
    (2015) Fungal Genetics and Biology, 79, pp. 42-53.
  12. Histological and biochemical aspects of compatible and incompatible wheat- Puccinia striiformis interactions
    Esmail, S.M., Omara, R.I., Abdelaal, K.A.A., Hafez, Y.M.
    (2019) Physiological and Molecular Plant Pathology, 106, pp. 120-128.
  13. Superoxide (O2 .-) accumulation contributes to symptomless (type I) nonhost resistance of plants to biotrophic pathogens
    Künstler, A., Bacsó, R., Albert, R., Barna, B., Király, Z., Hafez, Y.M., Fodor, J., Schwarczinger, I., Király, L.
    (2018) Plant Physiology and Biochemistry, 128, pp. 115-125.
  14. Resistance to wheat curl mite in arthropod-resistant rye-wheat translocation lines
    Aguirre-Rojas, L.M., Khalaf, L.K., Garcés-Carrera, S., Sinha, D.K., Chuang, W.-P., Michael Smith, C.
    (2017) Agronomy, 7 (4), art. no. 74, .
  15. Improving fungal disease forecasts in winter wheat: A critical role of intra-day variations of meteorological conditions in the development of Septoria leaf blotch
    El Jarroudi, M., Kouadio, L., El Jarroudi, M., Junk, J., Bock, C., Diouf, A.A., Delfosse, P.
    (2017) Field Crops Research, 213, pp. 12-20.
  16. Control of Puccinia triticina the causal agent of wheat leaf rust disease using safety resistance inducers correlated with endogenously antioxidant enzymes up-regulation
    Hafez, Y.M., Abdelaal, K.A.A., Taha, N.A., Badr, M.M., Esmaeil, R.A.
    (2017) Egyptian Journal of Biological Pest Control, 27 (1), pp. 101-110.
  17. Virulence analysis of wheat powdery mildew (Blumeria graminis f. sp. tritici) and effective genes in middle Delta, Egypt
    El-Shamy, M.M., Emara, H.M., Mohamed, M.E.
    (2016) Plant Disease, 100 (9), pp. 1927-1930.
  18. Identification of QoI fungicide-resistant genotypes of the wheat pathogen Zymoseptoria tritici in Algeria
    Allioui, N., Siah, A., Brinis, L., Reignault, P., Halama, P.
    (2016) Phytopathologia Mediterranea, 55 (1), pp. 89-97.
  19. Efficacy of certain bioagents on patho-physiological characters of wheat plants under wheat leaf rust stress
    Omara, R.I., El-Kot, G.A., Fadel, F.M., Abdelaal, K.A.A., Saleh, E.M.
    (2019) Physiological and Molecular Plant Pathology, 106, pp. 102-108.
  20. Occurrence of Septoria tritici blotch (Zymoseptoria tritici) disease on durum wheat, triticale, and bread wheat in northern Tunisia
    Chedli, R.B.H., M’barek, S.B., Yahyaoui, A., Kehel, Z., Rezgui, S.
    (2018) Chilean Journal of Agricultural Research, 78 (4), pp. 559-568.
  21. Biocontrol activity of effusol from the extremophile plant, Juncus maritimus, against the wheat pathogen Zymoseptoria tritici
    Sahli, R., Rivière, C., Siah, A., Smaoui, A., Samaillie, J., Hennebelle, T., Roumy, V., Ksouri, R., Halama, P., Sahpaz, S.
    (2018) Environmental Science and Pollution Research, 25 (30), pp. 29775-29783.
  22. Race structure of Pyrenophora tritici-repentis in Morocco
    Gamba, F.M., Bassi, F.M., Finckh, M.R.
    (2017) Phytopathologia Mediterranea, 56 (1), pp. 119-126.
  23. Mitochondrial DNA-based genetic diversity and population structure of Zymoseptoria tritici in Tunisia
    Naouari, M., Siah, A., Elgazzah, M., Reignault, P., Halama, P.
    (2016) European Journal of Plant Pathology, 146 (2), pp. 305-314.
  24. Identification of Pm24, Pm35 and Pm37 in thirteen Egyptian bread wheat cultivars using SSR markers [Identificação de Pm24, Pm35 e Pm37 em treze egípcios cultivares de trigo utilizando marcadores microssatélites]
    Emara, H.M., Omar, A.F., El-Shamy, M.M., Mohamed, M.E.
    (2016) Ciencia e Agrotecnologia, 40 (3), pp. 279-287.
  25. Influence of nitrogen sources on growth and mycotoxin production by isolates of Pyrenophora tritici-repentis from wheat
    Bouras, N., Holtz, M.D., Aboukhaddour, R., Strelkov, S.E.
    (2016) Crop Journal, 4 (2), pp. 119-128.
  26. New resistance sources to Russian wheat aphid (Diuraphis noxia) in Swedish wheat substitution and translocation lines with rye (Secale cereale) and Leymus mollis
    Andersson, S.C., Johansson, E., Baum, M., Rihawi, F., Bouhssini, M.E.
    (2015) Czech Journal of Genetics and Plant Breeding, 51 (4), pp. 162-165.
  27. Early detection of powdery mildew disease in wheat (Triticum aestivum L.) using thermal imaging technique
    Awad, Y.M., Abdullah, A.A., Bayoumi, T.Y., Abd-Elsalam, K., Hassanien, A.E.
    (2015) Advances in Intelligent Systems and Computing, 323, pp. 755-765.
  28. Genome-wide association study for multiple biotic stress resistance in synthetic hexaploid wheat
    Bhatta, M., Morgounov, A., Belamkar, V., Wegulo, S.N., Dababat, A.A., Erginbas-Orakci, G., Bouhssini, M.E., Gautam, P., Poland, J., Akci, N., Demir, L., Wanyera, R., Baenziger, P.S.
    (2019) International Journal of Molecular Sciences, 20 (15), art. no. 3667, .
  29. The genetic architecture of colonization resistance in Brachypodium distachyon to non-adapted stripe rust (Puccinia striiformis) isolates
    Bettgenhaeuser, J., Gardiner, M., Spanner, R., Green, P., Hernández-Pinzón, I., Hubbard, A., Ayliffe, M., Moscou, M.J.
    (2018) PLoS Genetics, 14 (9), art. no. e1007637, .
  30. Virulence of egyptian Blumeria graminis f. Sp. tritici population and response of egyptian wheat cultivars
    Abdelrhim, A., Abd-Alla, H.M., Abdou, E.-S., Ismail, M.E., Cowger, C.
    (2018) Plant Disease, 102 (2), pp. 391-397.
  31. Seed treatments with thiamine reduce the performance of generalist and specialist aphids on crop plants
    Hamada, A.M., Fatehi, J., Jonsson, L.M.V.
    (2018) Bulletin of Entomological Research, 108 (1), pp. 84-92.
  32. Correlation of fungal penetration, CWDE activities and defense-related genes with resistance of durum wheat cultivars to Zymoseptoria tritici
    Somai-Jemmali, L., Siah, A., Harbaoui, K., Fergaoui, S., Randoux, B., Magnin-Robert, M., Halama, P., Reignault, P., Hamada, W.
    (2017) Physiological and Molecular Plant Pathology, 100, pp. 117-125.
  33. Equal distribution of mating type alleles and the presence of strobilurin resistance in Algerian Zymoseptoria tritici field populations
    Neddaf, H.M., Aouini, L., Bouznad, Z., Kema, G.H.J.
    (2017) Plant Disease, 101 (4), pp. 544-549.
  34. Similar infection process and induced defense patterns during compatible interactions between Zymoseptoria tritici and both bread and durum wheat species
    Somai-Jemmali, L., Randoux, B., Siah, A., Magnin-Robert, M., Halama, P., Reignault, P., Hamada, W.
    (2017) European Journal of Plant Pathology, 147 (4), pp. 787-801.
  35. Specialization and host plant use of the common clones of Sitobion avenae (Homoptera: Aphididae)
    Alkhedir, H., Karlovsky, P., Mashaly, A.M.A., Vidal, S.
    (2016) Applied Entomology and Zoology, 51 (2), pp. 289-295.
  36. Resistance potential of bread wheat genotypes against yellow rust disease under Egyptian climate
    Mahmoud, A.F., Hassan, M.I., Amein, K.A.
    (2015) Plant Pathology Journal, 31 (4), pp. 402-413.
  37. Sources of partial resistance to leaf rust in hard wheat landraces Cultivated in Palestine
    Shtaya, M.J.Y.
    (2015) Walailak Journal of Science and Technology, 12 (3), pp. 245-250.
  38. Differences in Aceria tosichella population responses to wheat resistance genes and wheat virus transmission
    Khalaf, L., Chuang, W.-P., Aguirre-Rojas, L.M., Klein, P., Michael Smith, C.
    (2019) Arthropod-Plant Interactions, 13 (6), pp. 807-818.
  39. Development of single nucleotide polymorphism markers for the wheat curl mite resistance gene cmc4
    Zhao, J., Abdelsalam, N.R., Khalaf, L., Chuang, W.-P., Zhao, L., Smith, C.M., Carver, B., Bai, G.
    (2019) Crop Science, 59 (4), pp. 1567-1575.
  40. Powdery mildew susceptibility of spring wheat cultivars as a major constraint on grain yield
    Draz, I.S., Esmail, S.M., Abou-Zeid, M.A.E.-H., Essa, T.A.E.-M.
    (2019) Annals of Agricultural Sciences, 64 (1), pp. 39-45.
  41. Insecticidal activity of four lignans isolated from phryma leptostachya
    Li, Y., Wei, J., Fang, J., Lv, W., Ji, Y., Aioub, A.A.A., Zhang, J., Hu, Z.
    (2019) Molecules, 24 (10), art. no. 1976, .
  42. Pathotypic and molecular evolution of contemporary population of Puccinia striiformis f. sp. tritici in Egypt during 2016–2018
    Draz, I.S.
    (2019) Journal of Phytopathology, 167 (1), pp. 26-34.
  43. Twin Function of Zein-Zinc Coordination Complex: Wheat Nutrient Enrichment and Nanoshield against Pathogenic Infection
    Biswal, B.K., El Sadany, M., Divya, K., Sagar, P., Singhal, N.K., Sharma, S., Stobdan, T., Shanmugam, V.
    (2018) ACS Sustainable Chemistry and Engineering, 6 (5), pp. 5877-5887.
  44. Virulence of some Puccinia triticina races to the effective wheat leaf rust resistant genes Lr 9 and Lr 19 under Egyptian field conditions
    El-Orabey, W.M.
    (2018) Physiological and Molecular Plant Pathology, 102, pp. 163-172.
  45. The sensitivity of Canadian wheat genotypes to the necrotrophic effectors produced by Pyrenophora tritici-repentis
    Tran, A., Aboukhaddour, R., Strelkov, I.S., Bouras, N., Spaner, D., Strelkov, S.E.
    (2017) Canadian Journal of Plant Pathology, 39 (2), pp. 149-162.
  46. In vitro morphological characteristics of Pyrenophora tritici-repentis isolates from several Algerian agro-ecological zones
    Benslimane, H., Aouali, S., Khalfi, A., Ali, S., Bouznad, Z.
    (2017) Plant Pathology Journal, 33 (2), pp. 109-117.
  47. Zymoseptoria tritici development induces local senescence in wheat leaves, without affecting their monocarpic senescence under two contrasted nitrogen nutrition
    Bancal, M.-O., Ben Slimane, R., Bancal, P.
    (2016) Environmental and Experimental Botany, 132, pp. 154-162.
  48. Elgin-ND spring wheat: A newly adapted cultivar to the north-central plains of the united states with high agronomic and quality performance
    Mergoum, M., Simsek, S., Zhong, S., Acevedo, M., Friesen, T.L., Alamri, M.S., Xu, S., Liu, Z.
    (2016) Journal of Plant Registrations, 10 (2), pp. 130-134.
  49. Distribution, parasitoids and cyclic appearance of Russian wheat aphid Diuraphis noxia (Mordvilko, 1913) (Hemiptera, Aphididae) in Algeria
    Laamari, M., Boughida, S., Merouani, H.
    (2016) European Journal of Environmental Sciences, 6 (2), pp. 103-107.
  50. Postulation and efficiency of leaf rust resistance genes of wheat and biological control of virulence formulae of puccinia triticina races
    Ghoneem, K.M., Saber, W.I.A., Youssef, I.A.M., Mohamed, M.R., Al-Askar, A.A.
    (2015) Egyptian Journal of Biological Pest Control, 25 (1), pp. 23-31.
  51. Physiologic specialization of Puccinia triticina in Syria
    Kassem, M., El-Ahmed, A., Hazzam, H., Nachit, M.
    (2015) Phytopathologia Mediterranea, 54 (3), pp. 446-452.
  52. Evaluation of leaf rust resistant by detection of Lr genes in new egyptian wheat lines
    Esmail, R.M., Abdel Sattar, A.A., Mahfouze, H.A., Mahfouze, S.A., Abou-Ellail, M.A.
    (2015) Research Journal of Pharmaceutical, Biological and Chemical Sciences, 6 (2), pp. 1215-1222.
  53. Measurement of biorational effect of imidacloprid on some aphids spp. as well as on wheat (Triticum aestivum L.) using biochemical parameters and ISSR-PCR
    Qari, S., Shehawy, A.
    (2020) Journal of Food Biochemistry, 44 (8), art. no. e13257, .
  54. Identification of valuable sources of resistance to Zymoseptoria tritici in the Tunisian durum wheat landraces
    Ouaja, M., Aouini, L., Bahri, B., Ferjaoui, S., Medini, M., Marcel, T.C., Hamza, S.
    (2020) European Journal of Plant Pathology, 156 (2), pp. 647-661.
  55. Evaluation of a global spring wheat panel for stripe rust: Resistance loci validation and novel resources identification
    Elbasyoni, I.S., El-Orabey, W.M., Morsy, S., Baenziger, P.S., Ajlouni, Z.A., Dowikat, I.
    (2019) PLoS ONE, 14 (11), art. no. e0222755, .
  56. Resistance to insect pests in wheat—rye and Aegilops speltoides Tausch translocation and substitution lines
    Crespo-Herrera, L.A., Singh, R.P., Sabraoui, A., El-Bouhssini, M.
    (2019) Euphytica, 215 (7), art. no. 123, .
  57. Enzymatic activity in the resistance stress of winter wheat from different sources in the non-black land of the Center of Russian Federation
    Temirbekova, S.K., Ovsyankina, A.V., Ionova, N.E., Cheremisova, T.D., Afanasyeva, Y.V., Mitrofanova, O.P., Al-Azawi Nagham, M.H.
    (2019) Plant Archives, 19 (1), pp. 1653-1658.
  58. Ecological studies of certain aphid species and their associated predators on wheat plants at Qadisiyah Distract, Iraq
    Jabbar, A.S., Sasdoon, S.M.
    (2019) Indian Journal of Public Health Research and Development, 10 (2), pp. 370-375.
  59. Effects of organic fertilizers and wheat varieties on infestation by, corn leaf aphid, Rhopalosiphum maidis and wheat thrips, Haplothrips tritici and their predators
    Khidr, S.K.
    (2018) Iraqi Journal of Agricultural Sciences, 49 (1), pp. 93-104.
  60. The effect of agronomic factors on crop health and performance of winter wheat varieties bred for the conventional and the low input farming sector
    Rempelos, L., Almuayrifi, M.S.B., Baranski, M., Tetard-Jones, C., Barkla, B., Cakmak, I., Ozturk, L., Cooper, J., Volakakis, N., Hall, G., Zhao, B., Rose, T.J., Wang, J., Kalee, H.A., Sufar, E., Hasanalieya, G., Bilsborrow, P., Leifert, C.
    (2020) Field Crops Research, 254, art. no. 107822, .
  61. Prediction of leaf rust severity and yield loss in wheat based on environmental factors
    El-Orabey, W.M., Elkot, A.F.
    (2020) Journal of Plant Diseases and Protection, 127 (4), pp. 507-519.
  62. Occurrence of new races and virulence changes of the wheat stripe rust pathogen (Puccinia striiformis f. sp. tritici) in Egypt
    Shahin, A.A.
    (2020) Archives of Phytopathology and Plant Protection, 53 (11-12), pp. 552-569.
  63. The role of reactive oxygen species in the virulence of wheat leaf rust fungus Puccinia triticina
    Wang, X., Che, M.Z., Khalil, H.B., McCallum, B.D., Bakkeren, G., Rampitsch, C., Saville, B.J.
    (2020) Environmental Microbiology, 22 (7), pp. 2956-2967.
  64. Modeling Aceria tosichella biotype distribution over geographic space and time
    Khalaf, L., Timm, A., Chuang, W.-P., Enders, L., Hefley, T.J., Michael Smith, C.
    (2020) PLoS ONE, 15 (5), art. no. e0233507, .
  65. Pathotype diversification in the invasive PstS2 clonal lineage of Puccinia striiformis f. sp. tritici causing yellow rust on durum and bread wheat in Lebanon and Syria in 2010–2011
    El Amil, R., Ali, S., Bahri, B., Leconte, M., de Vallavieille-Pope, C., Nazari, K.
    (2020) Plant Pathology, 69 (4), pp. 618-630.
  66. BiologicalaspectsandpredationefficacyofCoccinella undecimpunctata L. On two aphid species under laboratoryconditions
    El-Deen Mohamed, F.G., Youssif, M.A.I., Hammad, K.A.A., Hassan, M.R.A.
    (2020) Plant Archives, 20 (1), pp. 1113-1120.
  67. Improved control of septoria tritici blotch in durum wheat using cultivar mixtures
    Ben M’Barek, S., Karisto, P., Abdedayem, W., Laribi, M., Fakhfakh, M., Kouki, H., Mikaberidze, A., Yahyaoui, A.
    (2020) Plant Pathology, .
  68. Crop wild relatives in durum wheat breeding: Drift or thrift?
    El Haddad, N., Kabbaj, H., Zaïm, M., El Hassouni, K., Tidiane Sall, A., Azouz, M., Ortiz, R., Baum, M., Amri, A., Gamba, F., Bassi, F.M.
    (2020) Crop Science, .
  69. Brown alga Ascophyllum nodosum extract-based product, Dalgin Active®, triggers defense mechanisms and confers protection in both bread and durum wheat against Zymoseptoria tritici
    Somai-Jemmali, L., Siah, A., Randoux, B., Magnin-Robert, M., Halama, P., Hamada, W., Reignault, P.
    (2020) Journal of Applied Phycology, .
  70. Morphologic and genetic analysis for geographic populations of greenbug Schizaphis graminum (Hemiptera: Aphididae) in Egypt
    Tabikha, R.M., Adss, I.A.
    (2020) Biologia, .
  71. Screening for resistance of Tunisian, Moroccan and Algerian wheat cultivars to Zymoseptoria tritici in Northern Tunisia
    Bel Hadj Chedli, R., Ben M’Barek, S., Souissi, A., Yahyaoui, A., Rezgui, S., Chaabane, H.
    (2020) Journal of Plant Pathology, .
  72. Weather-based predictive modeling of wheat stripe rust infection in Morocco
    El Jarroudi, M., Lahlali, R., Kouadio, L., Denis, A., Belleflamme, A., El Jarroudi, M., Boulif, M., Mahyou, H., Tychon, B.
    (2020) Agronomy, 10 (2), art. no. 10020280, .
  73. Pyrenophora tritici–repentis in Tunisia: Race Structure and Effector Genes
    Kamel, S., Cherif, M., Hafez, M., Despins, T., Aboukhaddour, R.
    (2019) Frontiers in Plant Science, 10, art. no. 1562, .
  74. Sexual reproduction of Zymoseptoria tritici on durum wheat in Tunisia revealed by presence of airborne inoculum, fruiting bodies and high levels of genetic diversity
    Hassine, M., Siah, A., Hellin, P., Cadalen, T., Halama, P., Hilbert, J.-L., Hamada, W., Baraket, M., Yahyaoui, A., Legrève, A., Duvivier, M.
    (2019) Fungal Biology, 123 (10), pp. 763-772.
  75. Seed Coating with Thyme Essential Oil or Paraburkholderia phytofirmans PsJN Strain: Conferring Septoria leaf blotch resistance and promotion of yield and grain isotopic composition in wheat
    Ben-Jabeur, M., Kthiri, Z., Harbaoui, K., Belguesmi, K., Serret, M.D., Araus, J.L., Hamada, W.
    (2019) Agronomy, 9 (10), art. no. 586, .
  76. Influence of three pest management treatments against aphid, sitobion avenae in winter wheat (Triticum aestivum l.) under moscow area conditions
    Rebouh, N.Y., Polityko, P., Latati, M., Pakina, E., Kapranov, V., Imbia, A., Norezzine, A., Gadzhikurbanov, A., Vvedenskiy, V., Iguerouada, M.
    (2019) Research on Crops, 20 (2), pp. 381-388.
  77. Point inoculation method for measuring adult plant response of wheat to stripe rust infection
    Boshoff, W.H.P., Prins, R., De Klerk, C., Krattinger, S.G., Bender, C.M., Maree, G.J., Rothmann, L., Pretorius, Z.A.
    (2019) Plant Disease, 103 (6), pp. 1228-1233.
  78. Geographical distribution and virulence phenotypes of Puccinia striiformis f. Sp. Tritici from wheat in Yunnan, China
    Gad, M.A., Li, H., Ashraful Alam, M.D., Sajjad, M., Li, M.
    (2019) ScienceAsia, 45 (6), pp. 572-580.
  79. Population dynamic of aphids and thrips on certain bread wheat cultivars in relation to yield, genotypic preference and factors regulating their fluctuation under drought and irrigation conditions
    Ahmed, A.M.M., Radi, A.A., Sánchez, F.J.S.
    (2019) Tropical and Subtropical Agroecosystems, 22 (3), pp. 769-783.
  80. Barley Varieties Stoneham and Sydney Exhibit Mild Antibiosis and Antixenosis Resistance to the Wheat Curl Mite, Aceria tosichella (Keifer)
    Aguirre-Rojas, L.M., Khalaf, L.K., Smith, C.M.
    (2019) Agronomy, 9 (11), art. no. 748, .
  81. Monitoring of Puccinia triticina Erikss. Physiologic races and effectiveness of Lr-genes in Egyptian wheat during 2014-2016 growing seasons
    Khadegah Najeeb, M.A., Thabet, M., Negm, S.S., El-Deeb, S.H.
    (2019) International Journal of Agricultural Technology, 15 (1), pp. 35-54.
  82. Slow rusting of bread wheat landraces to Puccinia striiformis f.sp. Tritici under artificial field inoculation
    Alo, F., Al-Saaid, W., Baum, M., Alatwani, H., Amri, A.
    (2018) Arab Journal of Plant Protection, 36 (2), pp. 164-175.
  83. The damage risk evaluation of Aphis gossypii on wheat by host shift and fitness comparison in wheat and cotton
    FAN, Y.-J., LI, F., Mohammed, A.A.A.H., YI, X.-Q., ZHANG, M., Desneux, N., GAO, X.-W.
    (2018) Journal of Integrative Agriculture, 17 (3), pp. 631-639.
  84. Potential of nanoparticles as products of biocontrol for controlling powdery mildew disease and yield of wheat plants
    Wafaa, H.M., Farhat, Thabet, M.G., Marian, S., Mosa, A.A., Hoballah, A., Abd-El-Kareem, F.
    (2018) Bioscience Research, 15 (4), pp. 3537-3557.
  85. Determination the population trends of cereal aphids and associated parasitoids by yellow sticky traps with reference to aphid management on wheat
    Salem, A.E.-D.A., Amro, M.A., Abdel-Moniem, A.S.H., Abdel-Galil, Y.M.A.
    (2017) Archives of Phytopathology and Plant Protection, 50 (19-20), pp. 1034-1042.
  86. An active role of systemic fungicides to curb wheat powdery mildew caused by Blumeria graminis F. Sp. Tritici
    Esmail, S.M., Draz, I.S.
    (2017) Agricultural Engineering International: CIGR Journal, 2017, pp. 315-322.
  87. Evaluation of certain plant extracts for the control of wheat leaf rust disease
    Abd El-Malik, N.I., Abbas, I.K.
    (2017) Egyptian Journal of Biological Pest Control, 27 (1), pp. 23-33.

  1. Protein modeling of yellow rust disease in wheat
    Aziz, S.E., Bano, R., Zayed, M.E., Elshikh, M.S., Khan, M.H., Chaudhry, Z., Rashid, H.
    (2017) Pakistan Journal of Botany, 49 (2), pp. 775-780.
  2. Use of blue-green algae (cyanobacteria) as biofungicides, biostimulants and improve wheat resistance to abiotic stress
    Haggag Wafaa, M.
    (2016) International Journal of Pharma and Bio Sciences, 7 (2), pp. 272-279.
  3. Improved caroteno-protein and exopolysaccharide production by rhodotorula glutinis for management of wheat grain diseases
    Haggag, W.M., Abouziena, H.F.
    (2016) Ponte, 72 (4), pp. 97-107.
  4. Oxalic acid as an alienate factor for wheat and barley resistance to cereal leafminer syringopais temperatella (Lederer, 1855) (Lepidoptera: Scythrididae) [Ácido oxálico como un factor enajenante para la resistencia del trigo y cebada al minador de los cereales Syringopais temperatella (Lederer, 1855) (Lepidoptera: Scythrididae)]
    Al-Zyoud, F., Hassawi, D., Ghabeish, I.
    (2015) SHILAP Revista de lepidopterologia, 43 (169), pp. 113-123.
  5. Occurrence of entomopathogenic fungi in grain aphids in upper egypt, with reference to certain pathogenic tests using scanning electron microscope
    Fahmy, B.F.G., Ghadir, N.M.F.A., Manaa, S.H., Abou Ghadir, M.F.
    (2015) Egyptian Journal of Biological Pest Control, 25 (1), pp. 177-181.
  6. Fungitoxic evaluation of new modified amidophosphonates (AP1, AP2) on the in vitro growth of two fungal strains
    Saib, A., Berrebbah, H., Djebar, M.-R., Berredjem, M.
    (2015) Research Journal of Environmental Toxicology, 9 (4), pp. 196-203.

 


 

اقرأ أيضاً

 

 

البريد الإلكتروني: info@arsco.org

الباحث الكريم .. ندعوك للكتابة عن ورقتك في هذه القائمة في مقال باللغة العربية لمزيد من التعريف ببحثك

info@arsco.org: البريد الإلكتروني

ترخيص عام

الموقع قائم على مبدأ الترخيص العام للجمهور في حرية النسخ والنقل والاقتباس من جميع المحتويات والنشرات والكتب والمقالات، دون مقابل وبشكل مجاني أبدي، شريطة أن يكون العمل المستفيد من النسخ أو النقل أو الاقتباس متاحا بترخيص مجاني وبذات شروط هذا الموقع، وأن تتم الاشارة إلى منشورنا وفق الأصول العلمية، ذكرا للكاتب والعنوان والموقع والتاريخ.

هذا والموقع يساعد المؤلف على نشر إنتاجه بلا مقابل من منفعة معنوية أو مادية، شريطة أن يكون العمل متوفراً للنسخ أو النقل أو الاقتباس للجمهور بشكل مجاني. ثم إن التكاليف التي يتكبدها الموقع والعاملون عليه تأتي من مساعدات ومعونات يقبلها الموقع ما لم تكن مرتبطة بأي شرط مقابل تلك المعونات.

license
0 التعليقات
Inline Feedbacks
View all comments
guest

شبكاتنا الاجتماعية

  • facebok
  • twitter
  • Instagram
  • Telegram
  • Youtube
  • Sound Cloud

يسعدنا أن تشاركونا أرائكم وتعليقاتكم حول هذهِ المقالة عبر التعليقات المباشرة بالأسفل أو عبر وسائل التواصل الإجتماعي الخاصة بالمنظمة

icons
0
Would love your thoughts, please comment.x
()
x